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Abstract
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life test is investigated using two optimization criterions. Maximum likelihood estimate and
the corresponding asymptotic confidence intervals are derived. Bayes estimate and credible
confidence intervals are also obtained based on progressive type-II censoring. A real-world data
examples are examined to illustrate the approaches employed in this study. Finally, simulation
studies are executed to validate the estimates.
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1 Introduction

List of Abbreviations and Symbols

CSALT : Constant-stress accelerated life test.
PT-IIC : Progressive type-II censoring.
MLE : Maximum likelihood estimate.
LD : Lindley distribution.
BE : Bayes estimate.
CI : Confidence interval.
ALT : Accelerated life test.
SSALT : Step-stress accelerated life test.
CS : Censoring scheme.
MCMC : Markov chain Monte Carlo.
HRF : Hazard rate function.
SEL : Square error loss function.
LINXL : Linear exponential loss function.
MSE : Mean square error.
AE : Average estimate.
θ : The scale parameter of Lindley distribution.
λ : The acceleration factor from any transformed stress level.
i = 1, . . . , k : Number of constant stress levels.
j = 1, . . . ,mi : The numder of the observed test unit under Si stress level.
p = 1, . . . , r : Number of failure causes.
I : The fisher information matrix of estimates.
U(Θ) : The function of parameters θ01, θ02 and λ.
c : The LINXL shape parameter.

Many products in the industrial field have gottenmore consistent as a consequence of the rapid
growth of equipments and their lives have become longer. It will be very hard to get the failure
times of such products under normal operating conditions. As a result, new methodologies were
created to accelerate the process of gathering sufficient failure data for high-reliability devices.
The ALT aims to collect accurately modeled lifetime data that can be analyzed to learnmore about
products under normal conditions.

ALT is applied by submitting products to stringent conditions that accelerate failure occur-
rence, and can be conducted usingmanymethods. Nelson [37] highlighted the benefits and draw-
backs of thesemethods. The CSALT and the SSALT are themost frequently usedmethods. CSALT
is widely used in different industries to evaluate the system and subsystem reliability, identify fail-
ure modes that need to be repaired, compare different manufacturers, etc. In CSALT, every unit
is tested at a preset constant stress level, making it the simplest to apply. Assume n is the total
test units available at k stress levels of CSALT. Also, assume that ni represents the total number
of units tested at the ith level of stress, where

k∑
i=1

ni = n. ALT ends at a certain time point or
when all test units fail. Many writers have written about CSALT, including Guan et al. [18] who
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studied the optimality of multiple CSALT for generalized exponential distribution and Jaheen et
al. [23] who introduced the Bayesian inference in CSALT for the generalized exponential distri-
bution under progressive censoring. Kim and Bai [25] proposed CSALT data analysis under two
failure situations. Watkins and John [44] investigated the CSALT at one of the stress levels ended
by type-II censoring. The inference related to CSALT based on geometric process under PT-IIC
is discussed by Mohie El-Din et al. [34]. Abdel-Hamid [1] presented Burr type-XII distribution’s
Constant-partially-ALTs under PT-IIC. The CSALT plan, based on the chord of the nonlinear stress
life relationship, was investigated by Gao et al. [13].

For SSALT, the applied stress on test units gradually increases at pre-determined periods or
concurrentlywith the occurrence of a pre-determined failure numbers. Despite the fact that SSALT
generates more failure data, the early changing time may alter the results of failures caused by
greater stress levels. As a result, in SSALT, it is necessary to ascertain the ideal period for the
stress levels to change. Many writers have written on SSALT, including Balakrishnan et al. [9]
who obtained the point and interval estimation based on type-II censoring, Abu-Moussa et al.
[36] who obtaind the expected Bayesian estimation for exponential model based on type-I hy-
brid censored data, Miller and Nelson [30] who proposed the optimum plans for the SSALT and
Mohie El-Din et al. [35] who studied the parametric inference for the extension of exponential
distribution under progressive type-II censoring. Bai et al. [7] investigated the ideal SSALTs un-
der censoring. Gouno et al. [17] introduced a step-stress experiment under the optimal condition
based on progressive censoring of type-I. Mohie El-Din et al. [12] applied the simple SSALT for
analyzing the progressive first-failure of the Weibull data. Asgharzadeh et al. [4] estimated and
predicted for proportional hazard family based on a simple SSALT model under type-II censored
data.

Since all products are made up of multiple components that might fail for a variety of causes,
these failure causes are investigated in order to draw correct inferences in survival analysis. In
such circumstances, competing risks are explored in order to study the causes of failure for any
product by a variable indicator that indicates the precise cause of failure. To analyze any set of data
with competing risks, Cox [11] proposed the latent failure model. Several writers have explored
competing riskswithALTs, includingMohie El-Din et al. [12]who stuided the step-stress partially
accelerated life testing with competing risks based on the progressive type-II censoring, Han and
Kundu [20] who obtained the statistical inference for the SSALT with competing risks for the
generalized exponential distribution under type-I censoring, and Abu-Moussa et al. [22] who
analyzed the progressive type-II competing risks data. Pascual [39] proposed planning ALT for
independent Weibull and competing risks. Wu et al. [45] used progressive hybrid censoring by
copula function to establish the inference for dependent competing risks with ALT.

In reliability tests, censoring is usedwhen the experimental can not observe all the failure times
for the sample. It also used to reduce the experiments time for collecting the lifetime data. The
most often utilized censoring schemes for ALTs are type-I and type-II censoring. However, no test
units under these two CSs are withdrawn during the experiment except at the last termination
time point of the experiment.

As a result, progressive censoring is utilized to treat this objective and the focus on progressive
censoring was rapidly increased in the last decades. PT-IIC is commonly employed in ALTs and
analyzing enormously reliable data. For more specifics on PT-IIC, see the book of Balakrishnan
and Aggarwala [10] which described the theory of progressive censoring with different applica-
tions. Several statistical conclusions were established under PT-IIC.

Abdel-Hamid [1] discussed the partially CSALT for a lifetimes distributed with Burr type-XII
under PT-IIC. BE for extension of exponential distribution by MCMC method under PT-IIC data
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was introduced by Singh et al. [41]. Kumar et al. [26] established the product moments with its
recurrence relations for Rayleigh distribution based on PT-IIC data. CSALT under PT-IIC is set by
assuming S0 is the stress level associatedwith typical usage, and k accelerated levels of stress with
S1 < S2 < . . . < Sk. Assume ni units are tested at the constant stress level Si, i = 1, 2, . . . , k with
pre-fixed progressive CS {Rij}, where Rij ≥ 0, i = 1, 2, . . . , k, j = 1, 2, . . . ,mi,

mi∑
j=1

Rij +mi = ni

and mi(≤ ni), i = 1, 2, . . . , k. Under the stress level Si, i = 1, 2, . . . , k, Ri1 out of ni − 1 surviving
units are discarded from the test at the first occurrence of failure ti1:mi:ni

, while Ri2 units from
the remain ni − 2−Ri1 units are discarded at the second failure ti2:mi:ni , and so on until themith
failure time timi:mi:ni

, where the test is terminated and all remain unitsRimi
= ni−mi−

mi−1∑
j=1

Rij

are dropped from the test.

LD is used to analyze data of failure times, principally, in the applications of modeling stress
strength reliability. It was introduced by Lindley [27]. The merit of LD is the ability to model data
of failure times with increasing hazard rates. It is one of the exponential family members andmay
be represented as a combination of gamma and exponential distributions, see Bakouch et al. [8].
It is also a good substitute for exponential failure time distributions, which don’t show bathtub-
shaped or unimodal failure rates. Mazucheli and Achcar [29] suggested the LD as a plausible
substitute for the exponential and Weibull distributions.

Modeling the lifetime of any process or equipment is commonly done with LD, so it can be
utilized in many different fields such as engineering, biology and medicine. Ghitany et al. [15]
discussed LD and its application. Ghitany et al. [14] used LD for modeling death-rate studies.
Shanker et al. [40] studied the two-parameter Lindley for modeling survival data. Valiollahi et al.
[43] studied the prediction for LD under type-II right censored samples. Asgharzadeh et al. [5]
introduced a statistical inference for LD model based on type-II censored data.

The LD’s probability density function (PDF) of a random variable t is given by,

f(t) =
θ2

1 + θ
(1 + t)e−θt, t, θ > 0, (1)

while its cumulative distribution function (CDF) is given by,

F (t) = 1− (1 +
θt

1 + θ
)e−θt, t, θ > 0, (2)

and the hazard rate function (HRF),

h(t) =
θ(1 + t)

1 + (1 + t)θ
, t, θ > 0. (3)

Please refer in Figure 1.

The innovation proposed in this paper is to study the CSALT under progressive type-II com-
peting risks data follow the Lindely lifetime distribution. Our work is motivated by the leaking
of the studies which combine the ALT with competing risks under censoring framework. The pa-
per is organized as follows, the description of the CSALT from LD with competing risks model
with test procedures are displayed in Section 2. MLEs by Newton-Raphson iteration method and
asymptotic CIs are described in Section 3. Section 4 describes the BEs by MCMC method and
credible CIs based on the informative and non-informative priors In Section 5, Two optimization
criteria are proposed to investigate the optimal transformed stress levels. Two sets of real data are
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provided as examples in Section 6. The simulation results are shown in Section 7, based on the
suggested estimation techniques. Finally, some conclusions are discussed in Section 8.

Figure 1: The PDF, CDF and HRF of LD.

2 Model Description and Test Assumptions

The used procedures through out this paper are stated as following:

1. For the CSALT, under Si, i = 1, . . . , k stress level, the Ti failure time is fitted by LD.
2. The function which links between the lifetime parameter θ and the applied stress S can be

expressed as any of these rules:
• Arrhenius relation: ln(θ) = a+

b

−S
, b > 0, which usedwhenS is a temperature variable.

• Inverse power relation: ln(θ) = a + b[ln(S)], b > 0, which used when S is a voltage
variable.

• Exponential relation: ln(θ) = a+bS, b > 0, which usedwhen S is aweathering variable.
Refer to Nelson [37] for the statistical models, test plans and data analyses for estimating
product reliability from accelerated tests. Thus, we suppose that Si and θi have the following
connected function,

ln(θi) = a+ bΩi, (4)

where i = 0, 1, . . . , k, a and b are positive unknown physical parameters, and an increasing
function of S, Ωi = Ω(Si) =

−1

Si
. From (4), the parameter θi is written as,

θi = θ0e
b(Ωi−Ω0) = θ0λ

hi , i = 0, 1, . . . , k, (5)
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where θ0 is the normal usage level S0 parameter of the LD, λ = exp
{
b(Ω1 − Ω0)

}
=

θ1
θ0

> 1

represents the factor of acceleration from S0 to S1 and any changed stress level

hi =
Ωi − Ω0

Ω1 − Ω0
, (6)

where 1 ≤ hi < ∞, i = 1, 2, . . . , k.
3. Assume thatwe are able to observe the failed test unit’s failure time and cause at the ith stress

level. Thus, we consider that the observed lifetime of this failed test unit is the smallest one
of the latent failure times. Let, the latent failure times xij1, xij2, . . . , xijr are independent.
Then, the failure time of the jth test unit is Tij = min {xij1, xij2, . . . , xijr}. Hence, the joint
PDF and CDF of failure cause p and failure time of the jth unit at the ith stress level are given,
respectively,

f(tij , p) =
θ20p

1 + θ0p

(
1 + tij

)
e−θ0ptij , tij , θ0p > 0, (7)

F (tij , p) = 1−
(
1 +

θ0ptij
1 + θ0p

)
e−θ0ptij , tij , θ0p > 0. (8)

4. Assuming that failure causes are independent, the following indicator can be used to indicate
the latent failure time can be expressed, for j = 1, 2, . . . ,mi, as follows,

cijp =

{
1, if Tij = xijp,

0, otherwise. (9)

5. Let tij = tij:mi:ni , i = 1, 2, . . . , k and j = 1, 2, . . . ,mi are the resulted failure times under Si

stress level for the failure cause p, where p = 1, 2, . . . , r . Hence, the likelihood function of
θ0p and λ under PT-IIC is presented by,

L(θ0p, λ) =

r∏
p=1

k∏
i=1

Ci

mi∏
j=1

f
cijp
Tip

(tij)
[
1− FTip

(tij)
]Rij

, (10)

where

Ci = ni (ni − 1−Ri1) (ni − 2−Ri1 −Ri2) · · ·

ni −mi + 1−
mi−1∑
j=1

Rij

 .

Since STip
(tij) = 1 − FTip

(tij) and fTip
(tij) = hTip

(tij)STip
(tij), likelihood function is ex-

pressed as following,

L(θ0p, λ) =

r∏
p=1

k∏
i=1

Ci

mi∏
j=1

h
cijp
Tip

(tij)
[
Sip(tij)

](Rij+1)
. (11)

3 Maximum Likelihood Estimation

MLEs of the parameters are obtained by utilizing the above procedures. Assuming the failure
causes number is (r = 2) and by substituting in (7), (8) and (11). The likelihood function of θ01,
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θ02 and λ is given as following,

L(θ01, θ02, λ|tij) ∝
k∏

i=1

mi∏
j=1

[(
(1 + tij)θ01λ

hi

1 + (1 + tij)θ01λhi

)cij1 (
(1 + tij)θ02λ

hi

1 + (1 + tij)θ02λhi

)cij2

((
1 +

θ01λ
hitij

1 + θ01λhi

)
e−θ01λ

hi tij

)Rij+1

((
1 +

θ02λ
hitij

1 + θ02λhi

)
e−θ02λ

hi tij

)Rij+1
]
.

(12)

Thus, log likelihood function is presented as,

ℓ = logL(θ01, θ02, λ|tij)

∝
k∑

i=1

mi∑
j=1

[
cij1

(
log

(
(1 + tij)θ01λ

hi
)
− log

(
1 + (1 + tij)θ01λ

hi
))

+ cij2

(
log

(
(1 + tij)θ02λ

hi
)
− log

(
1 + (1 + tij)θ02λ

hi
))

+ (Rij + 1)

(
log

(
1 +

θ01λ
hitij

1 + θ01λhi

)
+ log

(
1 +

θ02λ
hitij

1 + θ02λhi

)
− (θ01 + θ02)λ

hitij

)]
.

(13)

By differentiating the log-likelihood function in terms of each parameter before being equated to
zero. Here, we obtain three nonlinear equations with three unknown parameters θ01, θ02 and λ as
follows,

∂ℓ

∂θ01
= J1(θ01) =

k∑
i=1

mi∑
j=1

[
cij1

(
1

θ01
− (1 + tij)λ

hi

1 + (1 + tij)θ01λhi

)

+(Rij + 1)

 λhitij(1 + θ01λ
hi − λhi)(

1 +
θ01λ

hitij
1 + θ01λhi

)(
1 + θ01λhi

)2 − λhitij


 = 0,

(14)
∂ℓ

∂θ02
= J2(θ02) =

k∑
i=1

mi∑
j=1

[
cij2

(
1

θ02
− (1 + tij)λ

hi

1 + (1 + tij)θ02λhi

)

+(Rij + 1)

 λhitij(1 + θ02λ
hi − λhi)(

1 +
θ02λ

hitij
1 + θ02λhi

)
(1 + θ02λhi)2

− λhitij


 = 0,

(15)
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∂ℓ

∂λ
= J3(λ) =

k∑
i=1

mi∑
j=1

[
cij1

(
hi

λ
− hi(1 + tij)θ01λ

hi−1

1 + (1 + tij)θ01λhi

)
+ cij2

(
hi

λ
− hi(1 + tij)θ02λ

hi−1

1 + (1 + tij)θ02λhi

)

+ (Rij + 1)

 hiλ
hi−1θ01tij(

1 +
θ01λ

hitij
1 + θ01λhi

)
(1 + θ01λhi)2

+
hiλ

hi−1θ02tij(
1 +

θ02λ
hitij

1 + θ02λhi

)
(1 + θ02λhi)2

− (θ01 + θ02)hiλ
hi−1tij


 = 0.

(16)

These three nonlinear equations are very difficult to be solved in closed form. Therefore, an
iterative method like Newton-Raphson is utilized to get a numerical solution for such nonlinear
system.

3.1 Existence and uniqueness of MLEs

In this subsection, we discuss the existence and uniqueness of the MLEs that are obtained by
solving (14), (15), and (16). Since these equations are nonlinear and the MLEs can’t obtained in
an exact form, then the existence and uniqueness of the MLEs of the parameters θ01, θ02 and λ
can’t be proved analytically. So, it will be proved numerically and graphically by assuming that
there are two constant parameters and the third one is variable. for instance, if we assumed that
θ02 and λ are constants, then J1(θ01) in (14) is a function in one variable, it is easy to prove that the
function has a unique solution by showing graphically that the derivative of J1(θ01) is a negative
function which means that J1(θ01) is a decreasing function intersecting the horizontal axis one
time which is the unique solution of θ01 satisfies J1(θ01) = 0 and negative value as θ01 tends to∞.
The same situation can be applied for the parameters θ02 under the function J2(θ02) and λ under
the function J3(λ). Many authors have used this method of proving the existence and uniqueness
when having a nonlinear equations of MLEs. Abu-Moussa et al. [3] applied this method to prove
the uniqueness of MLEs of the two model parameters since the two nonlinear equations couldnot
be proved analytically and were proved numerically by the same applied method.

Illustrative Example

An illustrative example using a simulated data is applied to apply the graphical and numerical
prove of the existence and uniqueness of the MLEs. Assuming n1 = 29, m1 = 25, n2 = 16,
m2 = 13, n3 = 13, m3 = 11, and k = 3, we generate a sample of 3 stress levels using real values of
parameters θ01 = 0.4, θ02 = 0.5, and λ = 1.2. Table 1 shows the simulated data required for this
example.
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Table 1: Simulated data sets for 3 levels of CSALT.

Level 1 0.01124 0.14838 0.21342 0.22578 0.36963 0.39090 0.43537 0.46058 0.60343
0.63179 0.64344 0.65612 0.73252 1.01652 1.10730 1.15468 1.26533 1.5258
1.75590 1.91140 2.01859 2.62523 4.39639 5.74587 5.81403

Level 2 0.29965 0.51839 0.52253 0.60831 0.67654 1.11693 1.19244 1.31814 1.37079
1.57742 1.65436 1.70910 3.80188

Level 3 0.21477 0.22654 0.33771 0.53482 0.693842 0.93051 1.13398 1.34516 2.21883
3.25939 4.03266

where

R1 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
R2 = {0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0}, and
R3 = {0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0}.

Figures 2(a), 2(b) and 2(c) show the behaviour of J1(θ01), J2(θ02) and J3(λ) with their deriva-
tives. Its obvious that we have only oneML estimate value for each parameter when the other two
parameters are considered to be constant.
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Figure 2: The existence and uniqueness of the likelihood estimates of each variable when the two other variables are given or remaining
constant.

3.2 Asymptotic confidence intervals

Normal asymptotic CIs of the three parameters can be obtained using asymptotic distribution
which is introduced by Miller [32]. Given a random quantity υ, the asymptotic distribution of the
MLEs of υ represents θ01, θ02 or λ, is given as follows,(

( ˆθ01 − θ01), ( ˆθ02 − θ02), (λ̂− λ)
)

∼ N
(
0, I−1

)
,

where I is the Fisher information matrix of estimates and expressed as,

I
(
θ̂01, θ̂02, λ̂

)
=



− ∂2ℓ

∂θ201
− ∂2ℓ

∂θ01∂θ02
− ∂2ℓ

∂θ01∂λ

− ∂2ℓ

∂θ01∂θ02
− ∂2ℓ

∂θ202
− ∂2ℓ

∂θ02∂λ

− ∂2ℓ

∂θ01∂λ
− ∂2ℓ

∂θ02∂λ
− ∂2ℓ

∂λ2


. (17)

The asymptotic 100 (1− φ)% two sided CI of υ is represented by,

(υ̂l, υ̂u) = υ̂ ± Zφ/2
√
σii, i = 1, 2, 3, (18)

where σii is the variance of υ derived from the diagonal of I−1, and Zφ is 100φ− th percentile of
regular normal distribution.

4 Bayes Estimation

BEs of the three parameters are derived by using both of SEL and LINXL functions. LINXL
means the linear exponential loss function which is applied in analyzing the statistical estimation
and prediction problem which rises exponentially on one side of zero and almost linearly on the
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other side of zero. It is used in both overestimation and underestimation problems. LINXL func-
tion is applied in analyzing statistical estimation since it rises exponentially. It can be applied in
both overestimation and underestimation problems. The SEL function is given by,

L(θ̂, θ) ∝ (θ̂ − θ)2. (19)

The Bayes estimate relative to the SE loss function θ̂BS is given by,

θ̂BS = E(θ) =

∫
θ

θ π∗(θ|t) dθ. (20)

The LINXL function LLIN (θ̂, θ) is introduced as,

LLIN (θ̂, θ) ∝ ec(θ̂−θ) − c(θ̂ − θ)− 1, (21)

where c ̸= 0 is the shape parameter of LINXL function, θ̂ is an estimate of θ. The sign and magni-
tude of the shape parameter (c) express respectively the direction and degree of symmetry. When
c > 0, the overestimate is more serious than underestimate, and vice-versa. For c close to zero, the
LINXL is approximately SE loss and then almost symmetric. The Bayes estimator of θ under the
LINXL function is defined by,

θ̂BL =
−1

c
log

(
E(e−cθ)

)
=

−1

c
log

∫
θ

e−cθ π∗(θ|t) dθ

 . (22)

For more details about LINXL function, see Khatun [24] since they have explained how the
LINXL works in terms of changing the shape parameter and the error function through practi-
cal or detail explanations. BEs are obtained by using informative priors. The prior distributions
are assumed to be gamma owing to their flexibility, and because they accommodate a variety of
shapes reflected in prior beliefs. Miller [31] presented a Bayesian analysis of shape, scale, and
mean of the two-parameters gamma distribution and simplifications of the numerical analysis of
posterior distributions. Also, for more information about gamma prior see Moala [33] since he
derived distinct prior distributions in a Bayesian inference of the two-parameters gamma distri-
bution. Many authors used the gamma prior to obtain BEs, Goltong and Doguwa [16] discussed
the BEs of the Behrens-Fisher problem by using a Gamma Prior. Hasan and Baizid [21] studied
the BEs under different loss functions by using gamma prior for exponential distribution.

Assuming that θ01, θ02 and λ are independent parameters with gamma priors, then,

π1(θ01) ∝ θa1−1
01 e−θ01a2 , θ01 > 0, a1, a2 > 0, (23)

π2(θ02) ∝ θb1−1
02 e−θ02b2 , θ02 > 0, b1, b2 > 0, (24)

π3(λ) ∝ λg1−1e−λg2 , λ > 0, g1, g2 > 0. (25)

The values of hyper parameters ai, bi and gi, i = 1, 2, are predetermined by the experimenter. The
values of the prior parameters (a1,a2), (b1,b2) and (g1,g2) are obtained by using themean and vari-
ance of gamma distribution. The non-informative priors are a special case from the informative
priors in (23)–(25) when ai = bi = gi = 0, i = 1, 2.

From (23)–(25), the joint prior of the three parameters is given by,

π(θ01, θ02, λ) ∝ θa1−1
01 θb1−1

02 λg1−1e−θ01a2−θ02b2−λg2 , θ01, θ02 > 0, λ > 1. (26)
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From (12) and (26), the joint posterior distribution is given by,

π∗(θ01, θ02, λ|t) ∝ L(θ01, θ02, λ)π(θ01, θ02, λ)

∝ θa1−1
01 θb1−1

02 λg1−1e−θ01a2−θ02b2−λg2

k∏
i=1

mi∏
j=1

[(
(1 + tij)θ01λ

hi

1 + (1 + tij)θ01λhi

)cij1 (
(1 + tij)θ02λ

hi

1 + (1 + tij)θ02λhi

)cij2

(
(1 +

θ01λ
hitij

1 + θ01λhi
)e−θ01λ

hi tij

)Rij+1

(
(1 +

θ02λ
hitij

1 + θ02λhi
)e−θ02λ

hi tij

)Rij+1
]
.

(27)

BEs for the function of U(Θ) = U(θ01, θ02, λ) using SEL and LINXL functions are obtained by,

ŨSE(Θ) = E(U(Θ)) =

∫
Θ

U(Θ)π∗(Θ|t)dΘ, (28)

and

ŨLINX(Θ) = −1

c
ln
[
E(e−c U(Θ))

]
= −1

c
ln

[∫
Θ

e−c U(Θ)π∗(Θ|t)dΘ
]
,

(29)

where the LINXL function’s shape argument is c ̸= 0 and the expected value is E(.). These expec-
tations in (28) and (29) cannot be computed explicitly. Therefore, to approximate these expecta-
tions, the MCMC approach is applied.

4.1 MCMC approximation

MCMC approximation is applied through this subsection to approximate the BEs of θ01, θ02
and λ by generating a samples from the posterior distribution. Metropolis-Hastings algorithm is
applied as shown in Algorithm (1). The starting values are represented by (θ01, θ02, λ) say θ

(0)
01 ,

θ
(0)
02 and λ(0) in most cases it chosen as the maximum likelihood estimates.

There may be some worry that an MCMC algorithm’s starting values could distort outcomes
even if it eventually approaches this equilibrium distribution because it is rarely initialized from
its invariant distribution. In order to make up for this, a burn-in phase is frequently used, during
which the first M samples are deleted. M is typically set to be large enough such that the chain
has achieved its stationary regime by this point. Convergence of MCMC approximation assures
that we have sufficientlymany samples to approximate the posterior distribution. Formore details
about Metropolis-Hasting algorithm; see Updhyay and Gupta [42] where Bayes estimators were
obtained by usingMCMC algorithm under the balanced SE loss function and BEs were compared
with their corresponding MLEs based on Monte Carlo simulation. From (27), the conditional
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postrior distributions of θ01, θ02 and λ are given by:

P1(θ01|θ02, λ) ∝ θa1−1
01 e−θ01a2

k∏
i=1

mi∏
j=1

[(
(1 + tij)θ01λ

hi

1 + (1 + tij)θ01λhi

)cij1

((
1 +

θ01λ
hitij

1 + θ01λhi

)
e−θ01λ

hi tij

)Rij+1
]
,

(30)

P2(θ02|θ01, λ) ∝ θb1−1
02 e−θ02b2

k∏
i=1

mi∏
j=1

[(
(1 + tij)θ02λ

hi

1 + (1 + tij)θ02λhi

)cij2

((
1 +

θ02λ
hitij

1 + θ02λhi

)
e−θ02λ

hi tij

)Rij+1
]
,

(31)

P3(λ|θ01, θ02) ∝ λg1−1e−λg2

k∏
i=1

mi∏
j=1

[(
(1 + tij)θ01λ

hi

1 + (1 + tij)θ01λhi

)cij1 (
(1 + tij)θ02λ

hi

1 + (1 + tij)θ02λhi

)cij2

((
1 +

θ01λ
hitij

1 + θ01λhi

)
e−θ01λ

hi tij

)Rij+1

((
1 +

θ02λ
hitij

1 + θ02λhi

)
e−θ02λ

hi tij

)Rij+1
]
.

(32)

Given the complexity of the conditional posteriors of θ01, θ02 and λ, it is not feasible to constringe
them analytically to well-known distributions. Therefore, to generate from these distributions
some random samples, we turn toMetropolis-Hastings algorithm. This algorithm is used to obtain
the BEs of U = U(θ01, θ02, λ) under SE and LINXL functions:

Algorithm (1)

1. Start by the initial points of (θ01, θ02, λ) say (θ
(0)
01 , θ

(0)
02 , λ

(0)).
2. Start with i = 1.

3. Use Metropolis-Hasting algorithm to generate θ
(i)
01 , θ(i)02 and λ(i) from (30), (31) and (32)

respectively.
4. Let i = 1 + i.

5. Perform Steps (2− 4) for N times.
6. The approximated mean of e−cU and U can be obtained as,

E(e−cU ) =
1

N −M

N∑
i=M+1

exp{−cU(θ
(i)
01 , θ

(i)
02 , λ

(i))}, (33)

E(U) =
1

N −M

N∑
i=M+1

U(θ
(i)
01 , θ

(i)
02 , λ

(i)), (34)

where the burn-in period isM .
7. End.
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4.2 Credible confidence intervals

In this subsection, an intervel estimation for the model parameters are established using the
Credible CIs. The 100(1 − φ)% Bayesian credible or posterior interval for a random variable υ is
defined as follows:

Considering that υ lies in the interval where,

p(l ≤ υ ≤ u) =

∫ u

l

π∗(υ|t)dυ

= 1− φ.

Now, the credible CIs of θ01, θ02 and λ are established through the subsequent algorithm:

Algorithm (2)

1. Perform Steps (1− 6) from Algorithm (1).

2. Arrange all generated values in ascending order as
{
θ̃
[1]
01 ,

˜
θ
[2]
01 , . . . ,

˜
θ
[N ]
01

}
,
{
θ̃
[1]
02 ,

˜
θ
[2]
02 , . . . ,

˜
θ
[N ]
02

}
and

{
λ̃[1], λ̃[2], . . . , λ̃[N ]

}
.

3. End.

Then, 100 (1− φ)% credible CI of υ is given as,

(υ̃l, υ̃u) =
(
υ̃[φN/2], υ̃[(1−φ/2)N ]

)
, since υ represents θ01, θ02 or λ. (35)

5 Optimal Stress Levels

It is very important to designing anALT to estimate the reliability characteristics of any product
at the normal use conditions. Over the last years, the issue of choosing optimal designs of any
ALT has got a lot of attention in the reliability researches. A lot of researches have focused on
developing the optimal designs of ALTs, see, Bai and Chung [6] for optimal designs for PALTs
in which items were run at both accelerated and use conditions until a predetermined time are
considered. Gouno et al. [17] considered a k-SSALT with equal duration steps and censoring was
allowed at each change stress point. Bai et al. [7] obtained the optimum test plans to minimize the
asymptotic variance of the MLE of the mean life at a design stress and the optimum failure-step
stress test plans were obtained.

Yang [47] introduced an optimal design for a four level CSALT.Abdel-Hamed andAL-Hussaini
[2] discussed the issue of optimality based on the progressively type-I censored SSALT data for
the generalized Pareto distribution. The time and cost constrain es are considered in the study of
optimality of CSALTs and SSALTs that executed byHan [19] based on the exponential distribution.
Concerning the optimal designs of ALTs in competing risks model, Liu and Qiu [28] presented
some numerical results of SSALT planning using Compatible with independent Weibull compet-
ing risks. Pascual [38] studied the optimal plans of the CSALT with independent competing risks
based on Weibull distribution. The planning of CSALT was introduced by Wu and Huang [46]
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when the competing risks of exponential lifetime distribution are exist. Most studies in these pa-
pers provided numerical results only due to the complexity of the work.

In this section, D-optimality and A-optimality criterion are proposed by using the Fisher infor-
mation matrix. Determining the optimal transformed stress levels hi, i = 1, 2, . . . , k is proposed
for CSALT using PT-IIC data from LD. Assuming that k = 2 stress levels, (h1, h2) in the CSALT,
the optimal stress level of h2 should be calculated since the smallest transformed stress level is
fixed at h1 = 1.

5.1 D-optimality criterion

The D-optimality criterion is a test plan which maximizes the determinant of Fisher informa-
tion matrix. Maximizing the determinant is equivalent to minimizing the joint confidence region
of the parameters. Hence, from the Fisher information matrix I for the MLEs in (17), the deter-
minant of this matrix can be obtained as,

I = − ∂2ℓ

∂θ201

∂2ℓ

∂θ202

∂2ℓ

∂λ2
+

∂2ℓ

∂θ201

(
∂2ℓ

∂θ02∂λ

)2

+

(
∂2ℓ

∂θ01∂λ

)2
∂2ℓ

∂θ202
. (36)

Now, the optimal transformed value of the second stress level h∗
2 is calculated by,

Maximize
{
det

(
I( ˆθ01, ˆθ02, λ̂)

)}
. (37)

5.2 A-optimality criterion

Another important criterion is the A-optimality criterion. It depends on minimizing trace of
the asymptotic varaince-covaraince matrix. The A-optimality criterion aims to minimize sum of
themain diagonal elements of Fisher informationmatrix’s inverse. Then, the optimal transformed
stress level h∗

2 is calculated by:

Minimize
{
tr

(
I−1( ˆθ01, ˆθ02, λ̂)

)}
. (38)

6 Illustrative Examples

6.1 Example 1

This example is introduced to show the proposed methods. Nelson [37], page 393, has intro-
duced adata set for failure times of class-H insulation system inmotors. As the design temperature
was 180oC, the insulation systems were tested at high temperatures of 190oC, 220oC, 240oC and
260oC. Assuming that the causes of failure are independent as they occur on separate parts of the
insulation system, there were three causes of failure, the Turn, Phase and Ground. However, only
Turn (Cause 1) and Ground (Cause 2) failure causes are considered here, and we use the data
from 220oC and 240oC. These data are represented in Table 2.
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Table 2: Class-H insulation system failure time data with its cause of failure.

220oC 240oC

Xi1 Cause Xi1 Cause
1764 1 1175 2
2436 1 1175 2
2436 2 1521 1
2436 1 1569 1
2436 2 1617 1
2436 1 1665 1
3108 1 1665 1
3108 1 1713 1
3108 1 1761 1
3108 1 1953 1

Then, Arrhenius model was used to illustrate relationship describing the stress levels and the
mean lifetime when temperature represented the accelerating factor. The Arrhenius model is con-
sidered the most common applied life-stress relationship for thermal stresses. It is applied to
describe the change in temperature.

The applied stress levels were defined asK = 11605/tempK, where 1/11605 is the Boltzmann
constant in electron volts per degree Celsius and tempK = tempoC + 273.15 is the temperature
on the Kelvin scale. The standardized stress levels (S1, S2) are (0.6937, 1). The MLEs of the model
parameters were estimated as λ̂ = 3.74449, θ̂01 = 7.3567× 105 and θ̂02 = 3.7891× 105 to establish
any two-level CSALT in a life test. The results of the optimal transformed stress levels h∗

2 under
D-optimality and A-optimality criterion are provided, respectively, as 1.44154 and 1.44155.

6.2 Example 2

Another illustrative example is studied to support the proposed criterions. The data set, pre-
sented in Wu et al. [45], represents the accelerated failure times and causes with bivariate depen-
dent competing risks model. Using the Kolmogorov-Smirnov test, the data can be fitted by the
Lindely distribution with p−value 0.0957. In this data set, temperature is the accelerated stress.
There exist three accelerated stress levels, namely S1 = 303K, S2 = 333K and S3 = 363K and the
normal use stress level is S0 = 278K. At each stress level Si, ni = 20 units are tested for i = 1, 2, 3.
The numbers of removals are (r1, r2, r3) = (8, 12, 16), R1 = (12, 0, 0, . . . , 0), R2 = (8, 0, 0, . . . , 0)
and R3 = (4, 0, 0, . . . , 0). Table 3 displays the data set II, that will be used in this example, under
each stress level Si for i = 1, 2, 3.
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Table 3: Data set II.

S1
(4.1980 1) (23.8313 1) (26.0152 2) (29.3782 1)
(29.3803 1) (30.6721 1) (40.0238 2) (59.0081 2)

S2
(5.9225 2) (6.8313 1) (8.1998 1) (11.4263 1)(11.4930 1) (12.8073 1)

(15.3430 1) (17.0249 1) (18.4409 2) (18.4960 1) (22.2692 2) (35.3098 2)

S3

(1.3674 1) (1.5807 2) (1.8340 2) (4.2250 2) (5.0150 1) (5.0246 2)
(5.2322 2) (6.4447 2) (6.5251 2) (7.0332 2) (7.4556 2) (9.0729 1)

(9.8901 2) (11.6041 2) (12.9922 2) (14.4516 1)

The accelerated function ϕ(Si) =
−1

Si
is considered to extrapolate the estimators of the un-

known parameters at S0 normal use stress level. For h1 = 1, h2 = 2.0018 and h3 = 2.83802, MLEs
of the model parameters were calculated as λ̂ = 2.95711, θ̂01 = 0.0029456 and θ̂02 = 0.00298175.
The Fisher information matrix was obtained as,

I(λ̂, θ̂01, θ̂02) =


0.384899 −0.000797421 −0.000830053

−0.000797421 2.0257× 10−6 1.71967×−6

−0.000830053 1.71967× 10−6 2.15324× 10−6

 . (39)

The optimal transformed stress levels h∗
2 and h∗

3 under D-optimality criterion are, respectively,
equal to 1.66016 and 2.18744. For the A-optimality criterion, h∗

2 and h∗
3 under D-optimality crite-

rion are, respectively, equal to 1.60079 and 1.94961.

7 Simulation Study

This simulation research is carried out using different values of ni, mi and Rij , i = 1, 2, . . . , k,
j = 1, 2, . . . ,mi. This section investigates the performance of MLEs and BEs through mean square
errors (MSEs) and averages of the estimates (AEs) in case of informative and non-informative
priors. Asymptotic and credible CIs are obtained. The applied CSs in this simulation study are
presented in Table 4. Table 5 showsMSEs and AEs of the MLEs and BEs when the model parame-
ters have informative priors. MSEs andAEs of theMLEs and BEs in case of non-informative priors
are introduced in Table 6. Furthermore, Table 7 includes coverage probabilities (CP) and lengths
of 95% asymptotic and credible CIs in case of informative priors.

This simulation study for CSALT with competing risks for LD under PT-IIC is performed by
the following algorithm:

Algorithm (3)

1. Start by determine ni,mi, c, k stress levels, acceleration factors h1, h2, . . . , hk and the number
of competing risks p.

2. For specified values of (a1,a2), (b1,b2) and (g1,g2) prior parameters, generate θ01, θ02 and
λ from (23), (24) and (25) respectively. For non-informative priors, specify (a1,a2), (b1,b2)
and (g1,g2) equal zero.
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3. k of random samples with size mi are generated as (Ui1, Ui2, . . . , Uimi
), i = 1, 2, · · · , k from

Uniform(0, 1) distribution.
4. Specify the censoring schemes, Rij , i = 1, 2, . . . , k, and j = 1, 2, . . . ,mi where

mi∑
j=1

Rij = ni −mi.

5. Let Eij = U
1/(j+

mi∑
d=mi−j+1

Rid)

ij , j = 1, 2, . . . ,mi, and i = 1, 2, · · · , k.

6. Procure the PT-IIC samples (U∗
i1, U

∗
i2, . . . , U

∗
imi

), where U∗
ij = 1−

∏mi

d=mi−j+1 Eid,
j = 1, 2, . . . ,mi and i = 1, 2, . . . , k.

7. From Step 6, generate random samples (ti1, . . . , timi), i = 1, 2, . . . , k, as follows:

log[1− uij ] = log[A(tij)]− log[B(tij)]− λhitij(θ01 + θ02), (40)

where

A(tij) = 1 + (θ01 + θ02)λ
hi(1 + tij) + θ01θ02λ

2hi(1 + tij)
2, (41)

and

B(tij) = 1 + (θ01 + θ02)λ
hi + θ01θ02λ

2hi . (42)

8. Determine the failure cause indicator cijp, i = 1, 2, . . . , k, p = 1, 2, . . . , r and j = 1, 2, . . . ,mi

using the ratio,

R =

∞∫
0

fij1(tij)
−
F ij2 (tij)dtij . (43)

9. Calculate MLEs of the three parameters depending on PT-IIC data using the solution of the
nonlinear system of three equations by Newton-Raphson iteration.

10. Obtain the relative BEs to SE and LINXL functions of the parameters, using Algorithm (1),
by N = 11000 and M = 1000.

11. Determine parameters of the asymptotic confidence intervals (CIs) with a confidence level
of 95%.

12. Obtain the credible CIs via Algorithm (2) .
13. Repeat Steps (3− 11) for 1000 times.
14. Calculate MSEs and AEs average values resulted from MLEs and BEs.
15. Perform Steps (1 − 13) using another values of ni, mi, Rij , j = 1, 2, . . . ,mi, i = 1, 2, . . . , k

and the prior parameters.
16. End.

Here, we obtained Table 4.
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Table 4: The PT-IIC schemes applied in the simulation studies.

CS (Ri1, . . . , Rimi)

[1] Rij =

{
ni −mi, j = 1, i = 1, 2, 3, 4.

0, otherwise.

[2] Rij =

{
1, j = 1, . . . , ni −mi, i = 1, 2, 3, 4.

0, otherwise.

[3] Rij =

{
ni −mi, j = mi, i = 1, 2, 3, 4

0, otherwise
[4] Rij = 0, j = 0, i = 1, 2, 3, 4

Table 5: MSE and AE of MLEs and BEs in case of informative priors under SE and LINXL function for the parameters λ = 1.2, θ01 = 0.4
and θ02 = 0.5.

n m CS
MSE AE

ML SE LINXL ML SE LINXL
C=−2 C=2 C=−2 C=2

ni =


29 i = 1,

16 i = 2,

13 i = 3,

7 i = 4.

mi =


25 i = 1,

13 i = 2,

11 i = 3,

6 i = 4.

[1]
λ 0.05297 0.00727 0.00733 0.00725 1.19345 1.13984 1.42440 1.13755
θ01 0.03159 0.00562 0.00543 0.00581 0.22944 0.33952 0.34079 0.33827
θ02 0.05574 0.01730 0.01678 0.01787 0.27247 0.41313 0.41588 0.41030

[2]
λ 0.04942 0.00959 0.01064 0.00882 1.21419 1.16589 1.17238 1.16043
θ01 0.03386 0.00952 0.00923 0.00982 0.22282 0.32635 0.32801 0.32470
θ02 0.05924 0.02723 0.02661 0.02793 0.26498 0.37873 0.38182 0.37547

[3]
λ 0.04206 0.01396 0.01516 0.01301 1.15899 1.15187 1.15690 1.14730
θ01 0.02928 0.01046 0.01028 0.01063 0.23791 0.32318 0.32435 0.32208
θ02 0.05264 0.02508 0.02446 0.02570 0.07876 0.38884 0.39139 0.38637

ni =


29 i = 1,

16 i = 2,

13 i = 3,

7 i = 4.

mi =


29 i = 1,

16 i = 2,

13 i = 3,

7 i = 4.

[4]

λ 0.05318 0.01115 0.01212 0.01036 1.22437 1.17134 1.17634 1.16679
θ01 0.03424 0.01173 0.01146 0.01200 0.22432 0.31813 0.31965 0.31664
θ02 0.06053 0.03190 0.03164 0.03217 0.26174 0.37289 0.37441 0.37136

ni =


50 i = 1,

40 i = 2,

28 i = 3,

20 i = 4.

mi =


42 i = 1,

33 i = 2,

22 i = 3,

15 i = 4.

[1]
λ 0.05406 0.00323 0.00353 0.00295 1.24524 1.24075 1.24406 1.23748
θ01 0.03734 0.00114 0.00126 0.00103 0.21455 0.43069 0.43242 0.42899
θ02 0.06525 0.00035 0.00033 0.00037 0.25092 0.48179 0.48235 0.48125

[2]
λ 0.06393 0.00402 0.00436 0.00371 1.24552 1.25208 1.25513 1.24908
θ01 0.03189 0.00141 0.00154 0.00129 0.23210 0.43435 0.43610 0.43262
θ02 0.05959 0.00039 0.00037 0.00041 0.26549 0.48116 0.48172 0.48062

[3]
λ 0.03153 0.00320 0.00351 0.00291 1.17830 1.24813 1.25112 1.14515
θ01 0.03093 0.00081 0.00089 0.00073 0.22974 0.42545 0.42691 0.42399
θ02 0.05611 0.00050 0.00048 0.00052 0.26882 0.47864 0.47917 0.47813

ni =


50 i = 1,

40 i = 2,

28 i = 3,

20 i = 4.

mi =


50 i = 1,

40 i = 2,

28 i = 3,

20 i = 4.

[4]

λ 0.03551 0.00415 0.00451 0.00380 1.17691 1.12534 1.12564 1.12038
θ01 0.03023 0.00133 0.00144 0.00122 0.23395 0.43281 0.43439 0.43125
θ02 0.05378 0.00042 0.00040 0.00044 0.27326 0.48190 0.48250 0.48132
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Table 6: MSE and AE of MLEs and BEs in case of non-informative priors under SE and LINXL function for the parameters λ = 1.2,
θ01 = 0.4 and θ02 = 0.5.

n m CS
MSE AE

SE LINXL SE LINXL
C=−2 C=2 C=−2 C=2

ni =


29 i = 1,

16 i = 2,

13 i = 3,

7 i = 4.

mi =


25 i = 1,

13 i = 2,

11 i = 3,

6 i = 4.

[1]
λ 0.00690 0.00687 0.00696 1.13794 1.14042 1.13571
θ01 0.00390 0.00370 0.00410 0.34447 0.34576 0.34322
θ02 0.02124 0.02091 0.02152 0.39078 0.39205 0.38964

[2]
λ 0.01824 0.02003 0.01686 1.16803 1.17379 1.16290
θ01 0.01505 0.01499 0.01511 0.31062 0.31133 0.30995
θ02 0.04135 0.04104 0.04163 0.33909 0.34056 0.33763

[3]
λ 0.05770 0.06603 0.04987 1.24397 1.25404 1.23397
θ01 0.01419 0.01403 0.01432 0.31288 0.31374 0.31210
θ02 0.03913 0.03849 0.03986 0.34386 0.34651 0.34111

ni =


29 i = 1,

16 i = 2,

13 i = 3,

7 i = 4.

mi =


29 i = 1,

16 i = 2,

13 i = 3,

7 i = 4.

[4]

λ 0.01950 0.02470 0.01490 1.18207 1.19076 1.17306
θ01 0.00612 0.00572 0.00648 0.33512 0.33667 0.33374
θ02 0.03915 0.03857 0.03961 0.34049 0.34190 0.33931

ni =


50 i = 1,

40 i = 2,

28 i = 3,

20 i = 4.

mi =


42 i = 1,

33 i = 2,

22 i = 3,

15 i = 4.

[1]
λ 0.01821 0.01948 0.01712 1.20256 1.20734 1.19809
θ01 0.02408 0.02391 0.02425 0.25929 0.26004 0.25854
θ02 0.04685 0.04685 0.04685 0.29611 0.29616 0.29607

[2]
λ 0.01114 0.01139 0.01092 1.15572 1.15887 1.15276
θ01 0.01787 0.01780 0.01794 0.28437 0.28481 0.28392
θ02 0.04091 0.04063 0.04116 0.31682 0.31766 0.31608

[3]
λ 0.05154 0.05368 0.04960 1.16711 1.17099 1.16342
θ01 0.01380 0.01378 0.01382 0.30576 0.30599 0.30553
θ02 0.04360 0.04359 0.04360 0.32097 0.32110 0.32085

ni =


50 i = 1,

40 i = 2,

28 i = 3,

20 i = 4.

mi =


50 i = 1,

40 i = 2,

28 i = 3,

20 i = 4.

[4]

λ 0.02078 0.02206 0.01961 1.20598 1.20986 1.20227
θ01 0.02871 0.02870 0.02873 0.24396 0.24406 0.24386
θ02 0.04632 0.04570 0.04692 0.29708 0.29875 0.29556
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Table 7: Lengths andCPof 95% asymptotic and credible CIs for Informative Priors (IF) andNon-Informative Priors (NIF) for the parameters
λ = 1.2, θ01 = 0.4 and θ02 = 0.5.

n m CS
Lengths CP

Asymptotic Credible Credible Asymptotic Credible Credible
CI CI(IF) CI(NIF) CI CI(IF) CI(NIF)

ni =


29 i = 1,

16 i = 2,

13 i = 3,

7 i = 4.

mi =


25 i = 1,

13 i = 2,

11 i = 3,

6 i = 4.

[1]
λ 2.46335 0.15030 0.13467 1 0.62 0.6
θ01 0.62327 0.10938 0.10963 0.88 0.72 0.6
θ02 0.74597 0.13798 0.08479 0.72 0.78 0.5

[2]
λ 2.51965 0.21684 0.21032 1 0.72 0.8
θ01 0.62064 0.12109 0.08420 0.78 0.7 0.5
θ02 0.73691 0.11863 0.10477 0.7 0.6 0.4

[3]
λ 2.30097 0.17763 0.26727 1 0.64 0.4
θ01 0.63474 0.19381 0.09971 0.82 0.72 0.6
θ02 0.73838 0.11123 0.09228 0.76 0.66 0.5

ni =


29 i = 1,

16 i = 2,

13 i = 3,

7 i = 4.

mi =


29 i = 1,

16 i = 2,

13 i = 3,

7 i = 4.

[4]

λ 2.69409 0.19715 0.22267 1 0.62 0.7
θ01 0.63662 0.10983 0.11194 0.8 0.65 0.6
θ02 0.74478 0.08928 0.06764 0.7 0.6 0.4

ni =


50 i = 1,

40 i = 2,

28 i = 3,

20 i = 4.

mi =


42 i = 1,

33 i = 2,

22 i = 3,

15 i = 4.

[1]
λ 1.89007 0.21079 0.1985 1 0.9 0.4
θ01 0.46634 0.16457 0.04891 0.5 1 1
θ02 0.54089 0.08029 0.00905 0.6 1 1

[2]
λ 1.77117 0.19823 0.17934 1 0.8 0.6
θ01 0.45115 0.16118 0.04954 0.62 1 0.3
θ02 0.51464 0.08541 0.03395 0.6 1 0.3

[3]
λ 1.64296 0.20786 0.14751 1 0.96 0.2
θ01 0.44357 0.14704 0.04556 0.7 1 0.1
θ02 0.51413 0.08093 0.02086 0.6 1 0.2

ni =


50 i = 1,

40 i = 2,

28 i = 3,

20 i = 4.

mi =


50 i = 1,

40 i = 2,

28 i = 3,

20 i = 4.

[4]

λ 1.69542 0.20821 0.18778 1 0.88 0.6
θ01 0.46750 0.15372 0.01936 0.68 1 0.1
θ02 0.54626 0.08541 0.03315 0.66 0.96 0.1

8 Conclusion

This article discusses the inference of the CSALT in the presence of LD competing risks under
PT-IIC. Via simulation studies, MLEs and BEs are produced in the both cases of prior distribu-
tions (informative and non-informative) for the model parameters θ01, θ02 and λ. The informative
priors have favorable statistical features. Asymptotic and credible CIs are conducted for the pa-
rameters. Calculations have been performed by several progressive CSs with different sample
sizes. It is obvious that the statistical computations will be more expensive when we study more
failure causes. Based on the results in Tables 5−7, we have concluded that BEs is a preferable
choice to get better outcomes through the simulation studies. In addition, lengths of approximate
and credible CIs decrease when the sample size increase. With a high sample size, credible CIs
deliver more precise conclusions through CP than approximate CIs.

A comparison between the estimations using informative and non-informative priors is per-
formed to demonstrate that the informative prior produces superior outcomes. The numerical
results supports clearly the theoretical assumptions. The D-optimality and A-optimality Criterion
are applied successfully with satisfying results.
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